What type of propeller?
The propeller you use will depend entirely on your engine. Too much pitch is counter-productive as this reduces model acceleration. Not only does this lengthen the standing-start-to-top-speed time and reduce your flight score, it also makes rapid recovery from slow flight stalls more difficult. Too little pitch, however, and the model won’t realise the maximum speed possible.
Sorry – but the only way to find the most suitable prop is by trial and error. Generally, the stiffer the propeller, the more efficient and therefore the better it is, but don’t forget that deck landings frequently break propellers and the flexible types survive much longer. It’s most sensible to start off learning to fly Carrier with the less expensive flexible nylon props (the yellow Kavan and the white Tornado types are good examples) and graduate on to the more expensive stiffer brands (eg: Graupner, Bolly or APC) later. It’s also worth experimenting with diameter, pitch, stiffness and blade shape purely from the point of view of noise reduction. There’s often a propeller which maintains model performance whilst producing a noticeable drop in total noise. Sometimes a prop of this nature has been known to even increase performance!
What sort of fuel and glowplugs?
Fuel doesn’t necessarily need to be anything special at all. Basic Carrier Deck is not a horsepower event. It’s much more important to have an engine that starts easily, throttles well, doesn’t blow plugs and lasts a long time! Use of nitromethane in the fuel has the advantage that needle valve settings are generally less critical, but high nitro percentages require lower compression ratios (usually involving cylinder head shimming) and can burn out plugs. Unless your engine is designed to run on high nitro contents, 5% or 10% of this power ingredient is usually enough. Some engines even specify straight fuel, ie: a plain methanol/oil mix.
Plugs, too, are not a major issue. Most engines used in BCD will behave well on a variety of types. However, low throttle periods can be extended during the slow run and in a very few cases the engine can become over-cooled and the fire can simply go out. The solution here is often a barred plug (usually called an R/C plug), or a plug that’s a hotter grade. Plug grades are measured by a number which increases with the hotness of the plug. Hotter plugs produce better idling but have an increased risk of burning out.